Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Int J Obes (Lond) ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472354

RESUMO

BACKGROUND/OBJECTIVES: The effects of early life exposures on offspring life-course health are well established. This study assessed whether adding early socio-demographic and perinatal variables to a model based on polygenic risk score (PRS) improves prediction of obesity risk. METHODS: We used the Jerusalem Perinatal study (JPS) with data at birth and body mass index (BMI) and waist circumference (WC) measured at age 32. The PRS was constructed using over 2.1M common SNPs identified in genome-wide association study (GWAS) for BMI. Linear and logistic models were applied in a stepwise approach. We first examined the associations between genetic variables and obesity-related phenotypes (e.g., BMI and WC). Secondly, socio-demographic variables were added and finally perinatal exposures, such as maternal pre-pregnancy BMI (mppBMI) and gestational weight gain (GWG) were added to the model. Improvement in prediction of each step was assessed using measures of model discrimination (area under the curve, AUC), net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS: One standard deviation (SD) change in PRS was associated with a significant increase in BMI (ß = 1.40) and WC (ß = 2.45). These associations were slightly attenuated (13.7-14.2%) with the addition of early life exposures to the model. Also, higher mppBMI was associated with increased offspring BMI (ß = 0.39) and WC (ß = 0.79) (p < 0.001). For obesity (BMI ≥ 30) prediction, the addition of early socio-demographic and perinatal exposures to the PRS model significantly increased AUC from 0.69 to 0.73. At an obesity risk threshold of 15%, the addition of early socio-demographic and perinatal exposures to the PRS model provided a significant improvement in reclassification of obesity (NRI, 0.147; 95% CI 0.068-0.225). CONCLUSIONS: Inclusion of early life exposures, such as mppBMI and maternal smoking, to a model based on PRS improves obesity risk prediction in an Israeli population-sample.

2.
NAR Genom Bioinform ; 6(1): lqae021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486884

RESUMO

Many advances in biomedicine can be attributed to identifying unusual proteins and genes. Many of these proteins' unique properties were discovered by manual inspection, which is becoming infeasible at the scale of modern protein datasets. Here, we propose to tackle this challenge using anomaly detection methods that automatically identify unexpected properties. We adopt a state-of-the-art anomaly detection paradigm from computer vision, to highlight unusual proteins. We generate meaningful representations without labeled inputs, using pretrained deep neural network models. We apply these protein language models (pLM) to detect anomalies in function, phylogenetic families, and segmentation tasks. We compute protein anomaly scores to highlight human prion-like proteins, distinguish viral proteins from their host proteome, and mark non-classical ion/metal binding proteins and enzymes. Other tasks concern segmentation of protein sequences into folded and unstructured regions. We provide candidates for rare functionality (e.g. prion proteins). Additionally, we show the anomaly score is useful in 3D folding-related segmentation. Our novel method shows improved performance over strong baselines and has objectively high performance across a variety of tasks. We conclude that the combination of pLM and anomaly detection techniques is a valid method for discovering a range of global and local protein characteristics.

3.
Heliyon ; 10(1): e23781, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223716

RESUMO

Scientific research trends and interests evolve over time. The ability to identify and forecast these trends is vital for educational institutions, practitioners, investors, and funding organizations. In this study, we predict future trends in scientific publications using heterogeneous sources, including historical publication time series from PubMed, research and review articles, pre-trained language models, and patents. We demonstrate that scientific topic popularity levels and changes (trends) can be predicted five years in advance across 40 years and 125 diverse topics, including life-science concepts, biomedical, anatomy, and other science, technology, and engineering topics. Preceding publications and future patents are leading indicators for emerging scientific topics. We find the ratio of reviews to original research articles informative for identifying increasing or declining topics, with declining topics having an excess of reviews. We find that language models provide improved insights and predictions into temporal dynamics. In temporal validation, our models substantially outperform the historical baseline. Our findings suggest that similar dynamics apply across other scientific and engineering research topics. We present SciTrends, a user-friendly webtool for predicting future publication trends for any topic covered in PubMed.

4.
Biomolecules ; 14(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254713

RESUMO

Treatment of aging rats for 6 months with ladostigil (1 mg/kg/day) prevented a decline in recognition and spatial memory and suppressed the overexpression of gene-encoding pro-inflammatory cytokines, TNFα, IL1ß, and IL6 in the brain and microglial cultures. Primary cultures of mouse microglia stimulated by lipopolysaccharides (LPS, 0.75 µg/mL) and benzoyl ATPs (BzATP) were used to determine the concentration of ladostigil that reduces the secretion of these cytokine proteins. Ladostigil (1 × 10-11 M), a concentration compatible with the blood of aging rats in, prevented memory decline and reduced secretion of IL1ß and IL6 by ≈50%. RNA sequencing analysis showed that BzATP/LPS upregulated 25 genes, including early-growth response protein 1, (Egr1) which increased in the brain of subjects with neurodegenerative diseases. Ladostigil significantly decreased Egr1 gene expression and levels of the protein in the nucleus and increased TNF alpha-induced protein 3 (TNFaIP3), which suppresses cytokine release, in the microglial cytoplasm. Restoration of the aberrant signaling of these proteins in ATP/LPS-activated microglia in vivo might explain the prevention by ladostigil of the morphological and inflammatory changes in the brain of aging rats.


Assuntos
Citocinas , Indanos , Lipopolissacarídeos , Polifosfatos , Animais , Camundongos , Ratos , Proteína 1 de Resposta de Crescimento Precoce/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores Imunológicos , Indanos/farmacologia , Interleucina-6 , Lipopolissacarídeos/farmacologia , Microglia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia
5.
medRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732179

RESUMO

We assessed whether adding early life exposures to a model based on polygenic risk score (PRS) improves prediction of obesity risk. We used a birth cohort with data at birth and BMI and waist circumference (WC) measured at age 32. The PRS was composed of SNPs identified in GWAS for BMI. Linear and logistic models were used to explore associations with obesity-related phenotypes. Improvement in prediction was assessed using measures of model discrimination (AUC), and net reclassification improvement (NRI). One SD change in PRS was associated with a significant increase in BMI and WC. These associations were slightly attenuated (13.7%-14.2%) with the addition of early life exposures to the model. Also, higher maternal pre-pregnancy BMI was associated with increase in offspring BMI and WC (p<0.001). For prediction obesity (BMI ≥ 30), the addition of early life exposures to the PRS model significantly increase the AUC from 0.69 to 0.73. At an obesity risk threshold of 15%, the addition of early life exposures to the PRS model provided a significant improvement in reclassification of obesity (NRI, 0.147; 95% CI 0.068-0.225). We conclude that inclusion of early life exposures to a model based on PRS improves obesity risk prediction in an Israeli population-sample.

6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446105

RESUMO

The primary role of microglia is to maintain homeostasis by effectively responding to various disturbances. Activation of transcriptional programs determines the microglia's response to external stimuli. In this study, we stimulated murine neonatal microglial cells with benzoyl ATP (bzATP) and lipopolysaccharide (LPS), and monitored their ability to release pro-inflammatory cytokines. When cells are exposed to bzATP, a purinergic receptor agonist, a short-lived wave of transcriptional changes, occurs. However, only combining bzATP and LPS led to a sustainable and robust response. The transcriptional profile is dominated by induced cytokines (e.g., IL-1α and IL-1ß), chemokines, and their membrane receptors. Several abundant long noncoding RNAs (lncRNAs) are induced by bzATP/LPS, including Ptgs2os2, Bc1, and Morrbid, that function in inflammation and cytokine production. Analyzing the observed changes through TNF (Tumor necrosis factor) and NF-κB (nuclear factor kappa light chain enhancer of activated B cells) pathways confirmed that neonatal glial cells exhibit a distinctive expression program in which inflammatory-related genes are upregulated by orders of magnitude. The observed capacity of the microglial culture to activate a robust inflammatory response is useful for studying neurons under stress, brain injury, and aging. We propose the use of a primary neonatal microglia culture as a responsive in vitro model for testing drugs that may interact with inflammatory signaling and the lncRNA regulatory network.


Assuntos
Lipopolissacarídeos , Microglia , Camundongos , Animais , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Neuroglia/metabolismo , Inflamação/metabolismo , Células Cultivadas
7.
Hum Genet ; 142(7): 863-878, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133573

RESUMO

Hypertension is a polygenic disease that affects over 1.2 billion adults aged 30-79 worldwide. It is a major risk factor for renal, cerebrovascular, and cardiovascular diseases. The heritability of hypertension is estimated to be high; nevertheless, our understanding of its underlying mechanisms remains scarce and incomplete. This study covered the entries from European ancestry from the UK-Biobank (UKB), with 74,090 cases diagnosed with essential (primary) hypertension and 200,734 controls. We compared the findings from large-scale genome-wide association studies (GWAS) to the gene-based method of proteome-wide association studies (PWAS). We focused on 70 statistically significant associated genes, most of which failed to reach significance in variant-based GWAS. A total of 30% of the PWAS-associated genes were validated against independent cohorts, including the Finnish Biobank. Furthermore, gene-based analyses that were performed on both sexes revealed sex-dependent genetics with a stronger genetic component associated with females. Analysis of systolic and diastolic blood pressure measurements confirms a strong genetic effect associated with females. We demonstrated that gene-based approaches provide insight into the underlying biology of hypertension. Specifically, the expression profiles of the identified genes exposed the enrichment of endothelial cells from multiple organs. Furthermore, females' top-ranked significant genes are involved in cellular immunity. We conclude that studying hypertension and blood pressure via gene-based association methods improves interpretability and exposes sex-dependent genetic effects, which enhances clinical utility.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Masculino , Adulto , Humanos , Feminino , Predisposição Genética para Doença , Células Endoteliais , Hipertensão/genética , Proteoma/genética , Polimorfismo de Nucleotídeo Único , Hipertensão Essencial
8.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555797

RESUMO

Mature microRNAs (miRNAs) are single-stranded non-coding RNA (ncRNA) molecules that act in post-transcriptional regulation in animals and plants. A mature miRNA is the end product of consecutive, highly regulated processing steps of the primary miRNA transcript. Following base-paring of the mature miRNA with its mRNA target, translation is inhibited, and the targeted mRNA is degraded. There are hundreds of miRNAs in each cell that work together to regulate cellular key processes, including development, differentiation, cell cycle, apoptosis, inflammation, viral infection, and more. In this review, we present an overlooked layer of cellular regulation that addresses cell dynamics affecting miRNA accessibility. We discuss the regulation of miRNA local storage and translocation among cell compartments. The local amounts of the miRNAs and their targets dictate their actual availability, which determines the ability to fine-tune cell responses to abrupt or chronic changes. We emphasize that changes in miRNA storage and compactization occur under induced stress and changing conditions. Furthermore, we demonstrate shared principles on cell physiology, governed by miRNA under oxidative stress, tumorigenesis, viral infection, or synaptic plasticity. The evidence presented in this review article highlights the importance of spatial and temporal miRNA regulation for cell physiology. We argue that limiting the research to mature miRNAs within the cytosol undermines our understanding of the efficacy of miRNAs to regulate cell fate under stress conditions.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/genética , Diferenciação Celular , Homeostase/genética
9.
Noncoding RNA ; 8(6)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36412908

RESUMO

Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.

10.
Adv Exp Med Biol ; 1385: 133-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352213

RESUMO

MicroRNAs (miRNAs) provide a fundamental layer of regulation in cells. miRNAs act posttranscriptionally through complementary base-pairing with the 3'-UTR of a target mRNA, leading to mRNA degradation and translation arrest. The likelihood of forming a valid miRNA-target duplex within cells was computationally predicted and experimentally monitored. In human cells, the miRNA profiles determine their identity and physiology. Therefore, alterations in the composition of miRNAs signify many cancer types and chronic diseases. In this chapter, we introduce online functional tools and resources to facilitate miRNA research. We start by introducing currently available miRNA catalogs and miRNA-gateway portals for navigating among different miRNA-centric online resources. We then sketch several realistic challenges that may occur while investigating miRNA regulation in living cells. As a showcase, we demonstrate the utility of miRNAs and mRNAs expression databases that cover diverse human cells and tissues, including resources that report on genetic alterations affecting miRNA expression levels and alteration in binding capacity. Introducing tools linking miRNAs with transcription factor (TF) networks reveals miRNA regulation complexity within living cells. Finally, we concentrate on online resources that analyze miRNAs in human diseases and specifically in cancer. Altogether, we introduce contemporary, selected resources and online tools for studying miRNA regulation in cells and tissues and their utility in health and disease.


Assuntos
MicroRNAs , Humanos , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Bases de Dados Factuais
11.
Front Mol Biosci ; 9: 916639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158574

RESUMO

Post-transcriptional regulation in multicellular organisms is mediated by microRNAs. However, the principles that determine if a gene is regulated by miRNAs are poorly understood. Previous works focused mostly on miRNA seed matches and other features of the 3'-UTR of transcripts. These common approaches rely on knowledge of the miRNA families, and computational approaches still yield poor, inconsistent results, with many false positives. In this work, we present a different paradigm for predicting miRNA-regulated genes based on the encoded proteins. In a novel, automated machine learning framework, we use sequence as well as diverse functional annotations to train models on multiple organisms using experimentally validated data. We present insights from tens of millions of features extracted and ranked from different modalities. We show high predictive performance per organism and in generalization across species. We provide a list of novel predictions including Danio rerio (zebrafish) and Arabidopsis thaliana (mouse-ear cress). We compare genomic models and observe that our protein model outperforms, whereas a unified model improves on both. While most membranous and disease related proteins are regulated by miRNAs, the G-protein coupled receptor (GPCR) family is an exception, being mostly unregulated by miRNAs. We further show that the evolutionary conservation among paralogs does not imply any coherence in miRNA regulation. We conclude that duplicated paralogous genes that often changed their function, also diverse in their tendency to be miRNA regulated. We conclude that protein function is informative across species in predicting post-transcriptional miRNA regulation in living cells.

12.
J Pers Med ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35887611

RESUMO

Endometriosis is a condition characterized by implants of endometrial tissues into extrauterine sites, mostly within the pelvic peritoneum. The prevalence of endometriosis is under-diagnosed and is estimated to account for 5-10% of all women of reproductive age. The goal of this study was to develop a model for endometriosis based on the UK-biobank (UKB) and re-assess the contribution of known risk factors to endometriosis. We partitioned the data into those diagnosed with endometriosis (5924; ICD-10: N80) and a control group (142,723). We included over 1000 variables from the UKB covering personal information about female health, lifestyle, self-reported data, genetic variants, and medical history prior to endometriosis diagnosis. We applied machine learning algorithms to train an endometriosis prediction model. The optimal prediction was achieved with the gradient boosting algorithms of CatBoost for the data-combined model with an area under the ROC curve (ROC-AUC) of 0.81. The same results were obtained for women from a mixed ethnicity population of the UKB (7112; ICD-10: N80). We discovered that, prior to being diagnosed with endometriosis, affected women had significantly more ICD-10 diagnoses than the average unaffected woman. We used SHAP, an explainable AI tool, to estimate the marginal impact of a feature, given all other features. The informative features ranked by SHAP values included irritable bowel syndrome (IBS) and the length of the menstrual cycle. We conclude that the rich population-based retrospective data from the UKB are valuable for developing unified machine learning endometriosis models despite the limitations of missing data, noisy medical input, and participant age. The informative features of the model may improve clinical utility for endometriosis diagnosis.

13.
Genome Biol ; 23(1): 131, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725481

RESUMO

Genetic studies of human traits have revolutionized our understanding of the variation between individuals, and yet, the genetics of most traits is still poorly understood. In this review, we highlight the major open problems that need to be solved, and by discussing these challenges provide a primer to the field. We cover general issues such as population structure, epistasis and gene-environment interactions, data-related issues such as ancestry diversity and rare genetic variants, and specific challenges related to heritability estimates, genetic association studies, and polygenic risk scores. We emphasize the interconnectedness of these problems and suggest promising avenues to address them.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Interação Gene-Ambiente , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Bioinformatics ; 38(8): 2102-2110, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020807

RESUMO

SUMMARY: Self-supervised deep language modeling has shown unprecedented success across natural language tasks, and has recently been repurposed to biological sequences. However, existing models and pretraining methods are designed and optimized for text analysis. We introduce ProteinBERT, a deep language model specifically designed for proteins. Our pretraining scheme combines language modeling with a novel task of Gene Ontology (GO) annotation prediction. We introduce novel architectural elements that make the model highly efficient and flexible to long sequences. The architecture of ProteinBERT consists of both local and global representations, allowing end-to-end processing of these types of inputs and outputs. ProteinBERT obtains near state-of-the-art performance, and sometimes exceeds it, on multiple benchmarks covering diverse protein properties (including protein structure, post-translational modifications and biophysical attributes), despite using a far smaller and faster model than competing deep-learning methods. Overall, ProteinBERT provides an efficient framework for rapidly training protein predictors, even with limited labeled data. AVAILABILITY AND IMPLEMENTATION: Code and pretrained model weights are available at https://github.com/nadavbra/protein_bert. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Sequência de Aminoácidos , Proteínas/química , Idioma , Processamento de Linguagem Natural
15.
Viruses ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835132

RESUMO

BACKGROUND: Hepatitis E (HEV) is an emerging cause of viral hepatitis worldwide. Swine carrying hepatitis E genotype 3 (HEV-3) are responsible for the majority of chronic viral hepatitis cases in developed countries. Recently, genotype 7 (HEV-7), isolated from a dromedary camel in the United Arab Emirates, was also associated with chronic viral hepatitis in a transplant recipient. In Israel, chronic HEV infection has not yet been reported, although HEV seroprevalence in humans is ~10%. Camels and swine are >65% seropositive. Here we report on the isolation and characterization of HEV from local camels and swine. METHODS: Sera from camels (n = 142), feces from swine (n = 18) and blood from patients suspected of hepatitis E (n = 101) were collected during 2017-2020 and used to detect and characterize HEV sequences. RESULTS: HEV-3 isolated from local swine and the camel-derived HEV-7 sequence were highly similar to HEV-3f and HEV-7 sequences (88.2% and 86.4%, respectively) related to viral hepatitis. The deduced amino acid sequences of both isolates were also highly conserved (>98%). Two patients were HEV-RNA positive; acute HEV-1 infection could be confirmed in one of them. DISCUSSION: The absence of any reported HEV-3 and HEV-7 infection in humans remains puzzling, especially considering the reported seroprevalence rates, the similarity between HEV sequences related to chronic hepatitis and the HEV genotypes identified in swine and camels in Israel.


Assuntos
Anticorpos Anti-Hepatite/sangue , Vírus da Hepatite E/genética , Hepatite E/virologia , Doenças dos Suínos/virologia , Zoonoses/virologia , Adulto , Animais , Camelus , Fezes/virologia , Humanos , Israel , Masculino , Estudos Soroepidemiológicos , Suínos , Adulto Jovem
16.
NAR Genom Bioinform ; 3(3): lqab079, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541526

RESUMO

Human genetic variation in coding regions is fundamental to the study of protein structure and function. Most methods for interpreting missense variants consider substitution measures derived from homologous proteins across different species. In this study, we introduce human-specific amino acid (AA) substitution matrices that are based on genetic variations in the modern human population. We analyzed the frequencies of >4.8M single nucleotide variants (SNVs) at codon and AA resolution and compiled human-centric substitution matrices that are fundamentally different from classic cross-species matrices (e.g. BLOSUM, PAM). Our matrices are asymmetric, with some AA replacements showing significant directional preference. Moreover, these AA matrices are only partly predicted by nucleotide substitution rates. We further test the utility of our matrices in exposing functional signals of experimentally-validated protein annotations. A significant reduction in AA transition frequencies was observed across nine post-translational modification (PTM) types and four ion-binding sites. Our results propose a purifying selection signal in the human proteome across a diverse set of functional protein annotations and provide an empirical baseline for interpreting human genetic variation in coding regions.

17.
Biomedicines ; 9(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572436

RESUMO

A hallmark of the aging brain is the robust inflammation mediated by microglial activation. Pathophysiology of common neurodegenerative diseases involves oxidative stress and neuroinflammation. Chronic treatment of aging rats by ladostigil, a compound with antioxidant and anti-inflammatory function, prevented microglial activation and learning deficits. In this study, we further investigate the effect of ladostigil on undifferentiated SH-SY5Y cells. We show that SH-SY5Y cells exposed to acute (by H2O2) or chronic oxidative stress (by Sin1, 3-morpholinosydnonimine) induced apoptotic cell death. However, in the presence of ladostigil, the decline in cell viability and the increase of oxidative levels were partially reversed. RNA-seq analysis showed that prolonged oxidation by Sin1 resulted in a simultaneous reduction of the expression level of endoplasmic reticulum (ER) genes that participate in proteostasis. By comparing the differential gene expression profile of Sin1 treated cells to cells incubated with ladostigil before being exposed to Sin1, we observed an over-expression of Clk1 (Cdc2-like kinase 1) which was implicated in psychophysiological stress in mice and Alzheimer's disease. Ladostigil also suppressed the expression of Ccpg1 (Cell cycle progression 1) and Synj1 (Synaptojanin 1) that are involved in ER-autophagy and endocytic pathways. We postulate that ladostigil alleviated cell damage induced by oxidation. Therefore, under conditions of chronic stress that are observed in the aging brain, ladostigil may block oxidative stress processes and consequently reduce neurotoxicity.

18.
Cancers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439350

RESUMO

During the past decade, whole-genome sequencing of tumor biopsies and individuals with congenital disorders highlighted the phenomenon of chromoanagenesis, a single chaotic event of chromosomal rearrangement. Chromoanagenesis was shown to be frequent in many types of cancers, to occur in early stages of cancer development, and significantly impact the tumor's nature. However, an in-depth, cancer-type dependent analysis has been somewhat incomplete due to the shortage in whole genome sequencing of cancerous samples. In this study, we extracted data from The Pan-Cancer Analysis of Whole Genome (PCAWG) and The Cancer Genome Atlas (TCGA) to construct and test a machine learning algorithm that can detect chromoanagenesis with high accuracy (86%). The algorithm was applied to ~10,000 unlabeled TCGA cancer patients. We utilize the chromoanagenesis assignment results, to analyze cancer-type specific chromoanagenesis characteristics in 20 TCGA cancer types. Our results unveil prominent genes affected in either chromoanagenesis or non-chromoanagenesis tumorigenesis. The analysis reveals a mutual exclusivity relationship between the genes impaired in chromoanagenesis versus non-chromoanagenesis cases. We offer the discovered characteristics as possible targets for cancer diagnostic and therapeutic purposes.

19.
Vaccines (Basel) ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452062

RESUMO

Emerging SARS-CoV-2 variants may threaten global vaccination efforts and the awaited reduction in outbreak burden. In this study, we report a novel variant carrying the L452R mutation that emerged from a local B.1.362 lineage, B.1.362+L452R. The L452R mutation is associated with the Delta and Epsilon variants and was shown to cause increased infection and reduction in neutralization in pseudoviruses. Indeed, the B.1.362+L452R variant demonstrated a X4-fold reduction in neutralization capacity of sera from BNT162b2-vaccinated individuals compared to a wild-type strain. The variant infected 270 individuals in Israel between December 2020 and March 2021, until diminishing due to the gain in dominance of the Alpha variant in February 2021. This study demonstrates an independent, local emergence of a variant carrying a critical mutation, L452R, which may have the potential of becoming a variant of concern and emphasizes the importance of routine surveillance and detection of novel variants among efforts undertaken to prevent further disease spread.

20.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34373319

RESUMO

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and nucleocapsid (N) proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and obtained cross-link sets with an average density of one cross-link per 20 residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and interdomain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryogenic electron microscopy structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.


Assuntos
Modelos Moleculares , SARS-CoV-2/química , Proteínas Virais/química , Reagentes de Ligações Cruzadas/química , Células HEK293 , Humanos , Espectrometria de Massas , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...